
DYNAMIC SUBBAND STRUCTURES FOR ECHO CANCELLATION

Amere Oakman and Patrick Naylor

CSP Group, Dept. of Electrical and Electronic Engineering
London,UK

ABSTRACT
Subband adaptivefilterssuffer degraded performancewhen
high input energy occursat thefrequenciesof subbandbound-
aries. This is seen as increased error in critically sampled
systems and as reduced asymptotic convergence speed in
oversampled systems. An efficient dynamic frequency de-
composition scheme has previously been shown by the au-
thors to be effective in reducing these errors. This paper
presentsan analytical framework for theevaluation of these
non-uniform dynamic subband systems. Simulation results
show reductions in MSE of around 5-10dBs for the critical
case in addition to increased robustness to coloured inputs.

1. INTRODUCTION

Subband adaptive filters (SAF) are used in system identifi-
cation applicationssuch asacoustic echo cancellation where
theunknown system can beof theorder of several thousand
taps. They have the main benefits of reduced complexity
and possible increased convergence speed due to reduction
of eigenvalue spread in the subband signals [1]. Errors in
both critically and oversampled SAFs can be shown to be
related to signal components around subband boundaries,
which manifest themselves in the case of critical sampling
asdominating peaksin thefinal error signal around thesub-
band boundaries [2]. In the case of oversampling, slow
asymptotic convergence is observed [3].

This paper examines the use of non-uniform dynamic
frequency-subband decomposition (NDS) to substantially
reduce these errors. The algorithm chooses the decompo-
sition so as to avoid high-energy signal components around
subband boundaries, whilst retaining high decimation fac-
tors when possible so as to keep complexity low.

Previous work [4] is extended in this paper by the in-
troduction of an analytical framework appropriate for the
study of such non-uniform SAFs. The analysis is primarily
focussedoncritically sampled schemes, althoughtheframe-
work also applies to the oversampled case.

2. PROPOSED SCHEME

2.1. Filterbank structure

In thissection wepresent anoverview of theproposedscheme,
which is more fully described in [4]. A non-uniform fil-
terbank (NUFB) is obtained by merging the subbands of a
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Fig. 1. General dynamic filterbank structure

��
-channel uniform filterbank (UFB) and then decimating

each of the resulting
�

( � ��
) subbands by an integer fac-

tor ��� [5]. Thisstructureismodified to providean efficient
method of NDS. The structure has the general form of Fig-
ure 1, where ���
	�� is the fullband input signal, �������� are
polyphase components of a prototype lowpass filter ������� ,�

is a modulation matrix, ��� is a time-varying summa-
tion matrix consisting of ones and zeros, and ������	�� is the� th subband signal. The first stage of decimation is by a
constant integer, �� , whilst the second stage is by a time-
varying integer, � �! �#"$�� , for the

� th subband. Strictly,�
should be denoted

� � since it is time-varying, however
the index is dropped for clarity. �� represents the lowest
decimation factor in the structure and therefore defines the
largest subband channel bandwidth, determined by the ap-
plication and as the greatest common denominator of all
possible � �� �

��&%('*)!+,��� �� �#�*- ��. 	 (1)

to provide maximum decimation.
In Figure1, Block A is an oversampled UFB and Block

B is a subband merging section. This structure is preferred
sinceA can beimplementedefficiently using fast transforms
of theoutputsof adecimated polyphasenetwork and B con-
sistssolely of addersand decimators, allowing NDSthrough
changesin B only, without theneed for intermediateupsam-
pling/downsampling. The synthesis bank is the mirror of
Figure 1. The notation used to define a decomposition is a
‘split vector’ , theelementsof which indicatethebandwidths
of each subband relative to the constituent subband band-
width, e.g. a 4-band uniform decomposition (with a 4-band



constituent filterbank) is represented as / 0,0,0,0!1 whereas a
decomposition with thefirst two bands merged is / 2,030!1 .
2.2. Block A implementation

For the case of a critically sampled NUFB, Block A can be
implemented as a cosine-modulated filterbank (CMF), by
setting 45%62 �� and

�
to be a � �� x

�� � cosine modulation
matrix combined with acomplex-conjugatesummation ma-
trix. This will produce the required, real-valued subbands
as long as �� satifies (1). Implementing the modulation us-
ing a fast DCT gives an overall computational complexity
for Block A, in terms of real multiplies per fullband sample
period (rmfp),

�708"$��9�:��;=<?>@�A� �� "B2*��C DB'�E �� > �� �A� (2)

where ; < is the length of the prototype filter. Since for this
structure ��F� ��

, the computational cost of the filterbank
is slightly greater then for a standard filterbank. However,
this can be compensated for by reducing the subband com-
plexity whilst maintaining significant performance advan-
tages over equivalent complexity static structures, as shall
be seen. The oversampled implementation of the structure
is described in [4].

2.3. Control algorithm

Both critical and oversampled schemes use the same basic
approach.

�
isinitialised to

�HG % ��
, i.e. all subbandshave

minimum bandwidth at 	I%KJ , giving the greatest resolu-
tion for merging decisions. Thestructural adaptation occurs
blockwise, with merging decisions at the end of each block
based on thecriterion for the two cases. Smaller bandwidth
subbands are retained where possible, for efficiency. In the
critically sampled case, weattempt to removelargealiasing
errorsat thesubband boundaries, which areamain causeof
overall error [2].

3. SUBBAND ERROR ANALYSIS FOR
NON-UNIFORM SAFS

3.1. Subband Wiener-Hopf solution

Figure2 shows the
� th and � � >L08� th subband filtersof a

��
-

subband uniform SAF, including adjacent-band cross-filters
only, as in [2]. For the

� th analysis filter, the fullband un-
known system, and the fullband input and desired signals,
respectively, we defineM � %N/ O �! G O �� PRQ!Q:Q O �� S$T�U�P 1WV (3)X %N/ Y G YBP Q!Q!Q Y�S#ZAU�PA1 V (4)[ �
	��\%N/ ����	�������	^]_08� Q!Q!Q ����	^]`;\ab>(08�c1WV (5)d �
	��\%N/ e$�
	��=e$�
	^]_0f� Q!Q!Q e��
	^]`;hgi>(08�c1 V (6)
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Fig. 2. SAF model, j*k�l and ( j,m(n8ock�l subbands

where p$q
r�obsut�v�whq�r�o . The j th subband input and desired
signals xzy q
r�o{s}| vy w~q��� r�o������(j������� n (7)p y q
r�o{s}| vyz� q��� r�o������@j������� n (8)

which yields the subband input and desired vectors w y q�r�o
and � y q
r�o , respectively, defined analogously to (5) and (6).
The three length �~� subband adaptive filters in the j th sub-
band are � y�� y q�r�o and � y�� y:��� q
r�o . Thisgives the j th subband
desired-signal estimate �p y q
r�o and subband error � y q�r�o to be

�p y q
r�o{s}� vy�� y!��� q�r�o�w y���� q
r�o�m�� v y�� y q
r�o�w y q�r�om3� v y!� y:��� q
r�o�w y:��� q
r�o (9)� y q
r�o{s}p y q
r�o � �p y q
r�o (10)

Dropping the index r to indicate optimal values, the mini-
mum MSE (MMSE) in the j th subband can be written�B�:� ��� �F���R�8 !¡:¢ £z¤ ¥� !¦¡:¢ £z¤ ¥�§��¨#©ª¬«®°¯�±�²¡:¢ ¡!³ ¡:¢ ¡~´¯!±z²¡:¢ ¡:µ$¶·³ ¡:¢ ¡:µ$¶�´¯!±�²¡:¢ ¡¬¸$¶·³ ¡:¢ ¡¬¸�¶³ ² ¡:¢ ¡!¹ ¡:¢ ¡ ³ ¡:¢ ¡\º ³ ² ¡:¢ ¡!¹ ¡:¢ ¡:µ#¶ ³ ¡:¢ ¡:µ$¶zº ³ ² ¡:¢ ¡:µ$¶7¹ ¡:µ#¶7¢ ¡ ³ ¡:¢ ¡\º³ ² ¡:¢ ¡!¹ ¡:¢ ¡¬¸$¶ ³ ¡:¢ ¡¬¸�¶�º ³ ² ¡�¢ ¡¬¸�¶·¹ ¡¬¸$¶7¢ ¡ ³ ¡:¢ ¡\º³ ² ¡:¢ ¡:µ$¶7¹ ¡:µ$¶7¢ ¡:µ$¶ ³ ¡:¢ ¡:µ$¶zº ³ ² ¡:¢ ¡:µ$¶7¹ ¡:µ$¶c¢ ¡¬¸�¶ ³ ¡:¢ ¡¬¸�¶zº³ ² ¡:¢ ¡¬¸$¶·¹ ¡¬¸�¶c¢ ¡:µ$¶ ³ ¡:¢ ¡:µ$¶�º ³ ² ¡:¢ ¡¬¸�¶7¹ ¡¬¸$¶7¢ ¡¬¸�¶ ³ ¡:¢ ¡¬¸$¶

(11)

where »½¼ ¾I¿(À½ÁBÂ�¼cÃ
Ä�Å�Â�Æ¾ Ã
Ä�Å:Ç and È�Æ¼ ¾ ¿ÉÀ½Á�Ê�¼cÃ�Ä�Å�Â�Æ¾ Ã
Ä�Å:Ç .
Noting that » ¼ ¾ ¿�»½Æ¾i¼ , that » ¼ ¾ is in general negligi-
bly small when Ë Ì#ÍÏÎ�Ë�ÐNÑ , and extending the method in
[6], we take partial derivatives of Ò�Ó�Ô Õ\Ö × w.r.t. the individ-
ual filter taps in each SAF and set each to zero giving the
following set of Wiener-Hopf equations for the whole SAF
system

» sys Ø sys ¿@Ù sys (12)
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Ù sys has thesame form as Ø sys. Rearranging (12) gives the
subband adaptivefilter solutions

Ø sys ¿@»´ì�ísys Ù sys (14)

Substituting the expressions for È�î ï from (12) into (11)
gives the ð th subband errorñ�ò�ó ô=õ öR÷@øzùú�û?ü�ýßþ

sys,
ò8ÿ

sys,
ò

(15)

where
ý

sys,
ò

is the ð th column of
ý

sys and
ÿ

sys,
ò

is the ð th

columnof
ÿ

sys. Thisvaluewill not ingeneral bezero dueto
thefact that weareonly including adjacent band cross-band
adaptive filters. The actual value depends upon the level of
thenon-adjacent aliasing terms, which areusually small.

3.2. Non-uniform subband Wiener-Hopf solution

A non-uniformsubbanddecomposition isconstructed through
the merging of appropriate adjacent subbands. Therefore
the non-uniform filterbank has �� ü��

subband boundaries
in it’s constituent state, i.e. when no bands are merged.
Note that although Figure 2 shows cross-band adaptive fil-
ters, thisisonly for modellingpurposes, asthey arenot used
in the NDS implementation. Therefore, the initial state of
thesystem can be represented by�

sys,init ���	� 
����� ���������������������� � � �� � �"!$#%
sys,init ���	� 
����� & ��� & ��� ����� & �� � � �� � �"!$#'
sys,init ���	� 
����� ( �"� ( �"������� ( ��)� � ��)� ��!$#�

sys,init
%

sys,init � ' sys,init (16)

The set of solutions * sys,init will give rise to an error value
that is generally greater than the value in (15) (see [2] for
exceptions) due to the fact that no cross-band filters are
present. We can continue to use the framework to model
the subband errors in the non-uniform case by thinking of
the merging of two subbands as the absence of the bound-
ary between them and the presence of the associated cross-
band adaptive filters. In this sense we equate the system in
(13) with thenon-subband minimum error performanceand
the system in (16) with the standard critically sampled uni-
form SAF system. In this work, by considering the MMSE
for a merged subband as in (11), we represent general non-
uniform SAF error performance by the inclusion or exclu-
sion of the cross-band terms in the system equations. For

example, consider thesystem equations for asplit vector of+ , �-��.
%

sys4, / 0 �1�32 �
4555
6
& ��7 � & �"7 � 8 8& ��7 � & �"7 � 8 88 8 & 0 7 0 88 8 8 &$9 7 9

: ;;;
< (17)

The off-diagonal terms are those included to represent the
effect of the removal of the subband boundary due to the
merger of thetwo subbands. Thecorresponding = sys4, > ?)@A@CB
and D sys4, > ?)@A@CB matricesalso includethecorrespondingcross-
terms as in (17). We can now use these equations and their
solution for * sys4, > ?)@A@CB in order to compute the MMSE for
each non-uniform subband as in (15). In the general case
thiswill bethesummation of theconstituent subband terms
plusanadjustment which isthecovariancebetween thecon-
stituent desired signals (although in practice this is usually
small). The desired signal variance in the E th merged sub-
bandcomposedof FHG constituent bands, I�GKJ LNM"ICGOJ @ M�P�PHP�M"I�GKJ Q�ROS1T ,
is given by

UNVWYX[Z]\ X ^ _ Xa`cbd
\ ef\ X ^ g h

VWYikjml�\ X ^ _ Xa`Nnd
\ eo\ X ^ g prq�s \"tOu[v sNw\ x[y tOu[v"z|{�}�~k��� (18)

and �c�� X���� �� i X ^ g for �H� ��� . This is approximate as we

do not include terms of the form ���	�	���a�����f��O�[� �3���H� where�����
which are usually negligible. The subband MMSE

for the non-uniform SAF system in the general case is then
given by

� �K  ¡�¢ £ � � �� X[¤ � X ^ _ Xa¥ b¦�K§�� X ^ g)¨�©sys, �«ª sys, � (19)

where ¨ sys and ª sys areappropriately formed for thepartic-
ular non-uniform decomposition in question. It can beseen
that this is equivalent to the system in (16) when � � �¬�®°¯
and equivalent to thesystem in (13) with ��± �³²´ .

4. SIMULATIONS

4.1. 4-band example

A 4-constituent-band SAF system is simulated in order to
verify the above analysis. An ensemble of 50 white noise
and USASI inputs were applied in a system identification
setup for every allowable decomposition (5 in all), with an
unknown system of µ��«¶	� � ¶c·°��¸�¸ . In the white input
case, as expected, the subband errors and improvements
from merges are uniform (except subbands ¹ �»º and ¹ �²´ ¤ � where there is only 1 boundary and hence the error
is lower). This demonstrates that the improvements from
merging are in general the same for any split vectors with
equal complexity (excluding subbands ¹ �¼º and ¹ �²´ ¤ � ). In the USASI case, by contrast, the predicted
and simulated values of subband error for each split vector,
shown in Tables 1 and 2 respectively, illustrate the benefits



Split Vector Subband MMSE - predicted Sum
[1 1 1 1] 0.1135 0.1876 0.0553 0.0046 0.3610
[2 1 1] 0.0431 0.0553 0.0046 0.1030
[1 1 2] 0.1135 0.1876 0.0517 0.3528
[2 2] 0.0431 0.0517 0.0948
[4] ½¿¾ ÀrÁÃÂ�ÄÆÅfÇ Â$¾ À-ÁÃÂ�ÄÆÅfÇ
Table 1. subband errors, USASI input, predicted

Split Vector Subband MMSE - simulated Sum
[1 1 1 1] 0.1133 0.1879 0.0554 0.0047 0.3613
[2 1 1] 0.0438 0.0555 0.0047 0.1040
[1 1 2] 0.1140 0.1870 0.0515 0.3525
[2 2] 0.0438 0.0509 0.0947
[4] È	¾ ÉrÁ�Â�Ä Å[Ê«Ë È	¾ É-ÁÃÂ�Ä Å[ÊaË

Table 2. subband errors, USASI input, simulated

of the non-uniform scheme. The values agree very closely,
with differences being due to the stochastic nature of the
NLMSalgorithm used and thenon-adjacent subband cross-
terms. In this case, a split vector of Ì ÍÏÎÃÎHÐ results in an
MMSE over 5dBs smaller than the split vector of Ì Î�Î�Í$Ð
which hasequal complexity.

4.2. NDS example

We demonstrate the performance of NDS with a coloured
input Ñ�Ò3Ó�Ô having asinglepeak in thespectrum which falls,
in certain cases, at a subband boundary. The unknown sys-
tem is ÕÖÒC×	Ô�ØÙ×cÚ1Û�ÜYÝYÞ which is realistic in length and white,
which allows us to observe the differences in performance
due to the input signal characteristics only. Five NDS sys-
temswith ßà ØáÎ�â constituent bandsand minimum decima-
tion factor ãä Øæå arecompared with fiveuniform SAFsofà Øæçkè�écè�âoè�êfè"å subbands. Themaximum overall complex-
ity (including the filterbanks) of the NDS systems is set to
thecomplexity of each of theuniform systems. Figure 3(a)
shows the performance of the uniform SAFs to be highly
variable and not proportional to the complexity of the sys-
tem. Figure 3(b), shows that the performance of each NDS
system isrobust and that theerror decreaseswith increasing
complexity (

à
decreasing). It was observed that the dy-

namic frequency decomposition converged during the first
2000 iterations to solutions that avoid placing a subband
boundary in thespectral region with high input energy.

5. CONCLUSIONS

This paper has presented an analytical framework for
studyingNDSsystems. Theanalysisrepresentsnon-uniform
subband decompositions through the presence or absence
of cross-band adaptive filters. The validity of the analysis
is supported by simulations which show that the robustness
of NDS to highly coloured inputs yields improvements of
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Fig. 3. Uniform and adaptive critical SAF systems - (a)
uniform fixed decomposition (b) NDSwith fixed maximum
complexity

around 5-10dBs in MMSE in the critical case without in-
creasing complexity.
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